Selected examples for Chapter 3.



EXAMPLE 3.1

At a certain time n, a Bernoulli process is observed to have the value x|n,] =
+1. It is desired to compute the distribution for the waiting time to the next
“+1" in the sequence.

Suppose the time at which the next +1 occurs is at n = n, + [. Then there
must be [ — 1 consecutive —1’s occuring before the +1. Thus

Prltime to the next 4+1is ] = (1 — P)"~'P

for I =1,2,3,.... Note that the same answer would hold if z|n,] were equal
to —1. This shows that the Bernoulli process has no memory. Further,
the result is independent of the value of n,. This again demonstrates the
stationarity. O



EXAMPLE 3.2

A counting process is defined as a random process that counts the number
of positive values in a Bernoulli process after a given time n, up to any time
n > n,. Taking n, = 0 yields

n
gl = 3 (all) +1)/2
Each time z[l] takes on a value of +1 the corresponding term in the sum is
equal to one and each time x|l| is —1, the corresponding term is zero. Thus
y[n] represents the number of positive values in the sequence from [ = 1 to

[ =n.

The counting process can be used to model the evolution of observations in a
nonparametric signal detection procedure known as a sign test. In this test a
positive-valued signal is observed in zero-mean noise.



Signal No signal

Signal + noise Noise alone
M /\(\MM [ ALY,
W T \/\/4 w o VY

To give the detection procedure robust performance for noise processes with
a wide variety of statistical characteristics, only the sign of the observations is
used in the detector. Intuitively, for any fixed number of observations of the
received sequence, we would expect to find that there are more positive values if
the signal is present, and about equal numbers of positive and negative values if
the signal is not present. The number of positive values, which can be modeled
as a counting process, is compared to a threshold to make a detection decision.

Fx.3.2(2)



x[n] x[n]

Sign of sampled Sign of sampled noise
signal + noise

rr r rrr o,
I

-t 1,
P!

yin] count y[n] count

DU Ll

Notice that the counting process looks like a set of steps occuring at random
times. Observe that at time n, y[n| can take on any integer values between 0
and n. To compute the probability distribution of this random process suppose
that y|n| is equal to some value r. This means that there are r positive values
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and n — r negative values between [ = 0 and [ = n. These can occur in any
order. The number of combinations of positive and negative values is given by
the binomial coeflicient

Thus it follows that
o (Z’)Pr(l—P)”_T r=0,1,...,n
Priyln] =] = { 0 otherwise

This i1s the binomial distribution. O

Ex.3.2(})



EXAMPLE 3.7

A sinusoidal random process has the form
xn] = Acoswen

where A is a zero-mean random variable with density fa(A). The probability
density functions for the random process can be computed as follows. For
any choice of the parameter n = ng the single sample x|ng| is just a known
constant (coswyng) times the random variable A. Therefore the first order
density is simply

Fong0) = fa [ =]

B | cos weny A\ cos wony
as long as coswyng # 0. For example, if A is uniformly distributed between —1
and +1, the densities appear as shown below:

fa(A) Safng)(X0)

1
2| cos wony|

DO | —

—1 1 A —| cos wonyg COS Wony| X0



Note that as coswyng — 0 the density for the sample approaches a unit

impulse. This is as it should be since at a zero crossing the value of x[ng| is 0
with probability one.

To find the joint density for two samples, we first find the conditional den-
SIY  fafny] | 2fng) @nd multiply this by fupm t0 g€t fonglefny)- To find the con-
ditional density, assume that the value x|ng| = x¢ was observed. Then since
A = x¢/ cos weng, the value of x|ny] is precisely equal to

X0
X] = | ——| coswyn
COS WoN

In other words, given x|ng|, the random variable x|nq] is known with certainty.
[ts conditional density is therefore an impulse as shown below.

) o) (X1]X0)

1 K €OS Wol|
. _ X( COS wWoN
T fx[nl] | z[ng) (Xl‘x()) — 50 <X1 COS WoNy) )
X() COS WoN | X1
COS Wony()
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Therefore

Fatnolelny] (%0, X1) = fafng) (X0) fefny] | 2fng) (X1[%0)

1 X0 X( COS WM ]
— f A 60 X1 —
| cos weny| COS WeT COS WeTg

Higher order densities can be computed by multiplying by additional terms.
For example, to compute fp,0120n,]2ny) Multiply the above result by

X1 COS WMo
Safna) Ix[no]ﬂf[”l](XQ‘XOXl) = 0 (X2  cos WoTq )

By continuing in this way the joint density for any number of samples can be
derived.

From the foregoing result and the definition

fx[no],x[nl],...aj[nL] — fas[n0+k0P],x[n1+k1P],...aj[nL+kLP]

it can be seen that the random process x|n] is periodic if and only if w, is a
rational multiple of 27, that is if w, is of the form w, = 27K/ P where K and

P are both integers. In this case the random process is periodic with period
equal to P = 21 K /w,. O
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EXAMPLE 3.8

A Gaussian ‘white noise’ process consists of a sequence of zero-mean indepen-
dent Gaussian random variables w[n| with variance o2, Because a Gaussian
random vector is defined by only its first two moments, a complete statisti-
cal description of this random process requires only being able to write the
mean vector and covariance matrix for any set of samples of this random pro-
cess. Since the mean is zero and the samples are independent, the white noise

process has the simple characterization

mqpy =0
and
o2 0 - 0
Cow=| " %V o
00 02

where the dimensions of the vector and matrix are determined by the number
of samples taken.



The Gaussian white noise sequence is applied to a linear filter which produces
an output random process according to the difference equation

x|n] = pxln — 1] + wn|

with real coefficient p. From previous considerations, this output random pro-
cess is known to be both a Gaussian random process and a Markov process.
Such a random process is sometimes called a Gauss-Markov process. Now as-
sume for convenience that the process is generated from the difference equation
beginning at n, = 0 with initial conditions z[—1] = 0. Then by carrying out
successive steps of the recursion the output can be written in the convolution
form . i
n—
o] = 8 wiklp
or in the matrix form

x|0] 1 0 0---0][wl0
x|l p 1 0---0]wl
x[Q] = ,.02 ,0 1 S| w.[2
el Lom 1] L
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Since this is in the form & = Aw the mean vector and covariance matrix of
the output process are given by mg = Amgqy and Cp = ACqA’. Thus

mg;:O
and
1 0 0---0][c2 0 0 011 p p*--- p"
p 1 0---0[]0 a2 0 01101 p . pl
Cx=|p*p 1---0/]0 0 o2---01][001
_pnpn—l - 1]10 0 0 ---ag__OOO | |
After some algebraic manipulation this last expression can be put in the form
_1 p [02 « o o IOn 1- _1 [02 102 « o o pn 1-
> |p L p e p 00 |p p p e P
Co=—tyiptp 1 i =Bl b e
1_10 : : . .. 10 1_p2 : : : :
pn pn—l ce P 1 | IOn pn—l—l IOn—I—Q ,02n

The first matrix has the interesting property that the elements on each principal
diagonal are equal. It will be seen later that this type of covariance matrix,
known as a Toeplitz matrix, arises whenever a random process is stationary.
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The random process x|n| is thus seen to have a stationary component that
arises from applying the stationary sequence wn| to a linear time-invariant
system. The second matrix is a Hankel matrix and has the property that all
elements on the reverse diagonals are equal. This component of the covariance
represents the ‘transient response’ for the system resulting from applying the
noise at n, = 0. If |p| is less than one, which is the condition for stability of the
linear shift-invariant system, this transient component eventually disappears
(one can observe that the terms in the lower right block of this matrix get
closer and closer to zero). In the limit when the output sequence is observed
at some time far removed from when the input was first applied, the resulting
covariance has only the stationary (Toeplitz) component.

The transient portion of the covariance matrix can be eliminated completely
by changing the initial variance of the white noise (i.e., at n = n,) to the value

2
o)
12 o) 2
(70—1 2—(70+
—p

oo’
1—0p

2
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The white noise covariance matrix then becomes

'a(’f 0 --- 0]
, 0 o --- 0
wT

0 0 ---ag_

and the product ACf, A’ contains an extra term that cancels the transient part
of Cg. The transient portion can be thought of as arising from a mismatch
between the steady state variance of the output process and that of the initial
input when we force Var [z[n,]] to be equal to Var [w[n,]|. Changing the the
variance of w|n,| to match that of the steady state response eliminates the
transient. O

Fx.3.8(5)



